Electrical permittivity and conductivity of carbon black-polyvinyl chloride composites

نویسندگان

  • K. T. Chung
  • A. Sabo
چکیده

Electrical conductivity and permittivity of carbon black-polyvinyl chloride composites were studied over a wide frequency spectrum (dc, 1.3 GHz). Conductivity of the bulk composites increases with higher volume fraction of carbon black as expected. However, the functional dependence of the increasing conductivity with carbon black loading is different below and above the percolation threshold because ofthe different mechanisms involved. Bulk electric permittivity increases until the composite percolation is reached and then decreases to zero after fully connected conductive paths have been established. Such highly loaded composites showed a metal-like electrical behavior. Different electrical percolation threshold of the composites were found for different species ofcarbon black. Carbon blacks with the lowest packing efficiency reach the percolation threshold with the least volume fraction ofcarbon black loading. The percolation behavior ofspherical carbon blacks showed good agreement with Bruggeman's effective-medium theory in terms of both the percolation threshold and frequency dependence of conductivity at percolation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical and electromagnetic properties of isolated carbon nanotubes and carbon nanotube-based composites

Isolated carbon nanotubes (CNTs), CNT films and CNT-polymer nanocomposites are a new generation of materials with outstanding mechanical, thermal, electrical and electromagnetic properties. The main objective of this article is to provide a comprehensive review on the investigations performed in the field of characterizing electrical and electromagnetic properties of isolated CNTs and CNT-reinf...

متن کامل

Electrical properties of UHMWPE/graphite nanoplates composites obtained by in-situ polymerization method

There are described nanocomposites based on ultra high molecular weight polyethylene and graphite nanoplates prepared by in-situ polymerization method. It is carried out a comprehensive study of electric properties of these composites, including direct current (dc) and alternating current (ac) properties. There is explored dependence of the conductivity and dielectric permeability on filler con...

متن کامل

Electrically Conductive Latex-Based Composites

Electrically conductive polymer composites filled with carbon black can exhibit the mechanical behavior of a polymer and metallic electrical conductivity. Unfortunately, excessive amounts of carbon black can produce brittle films and too little carbon black can result in low conductivity. Composite conductivity can be dramatically improved by using latex as the matrix starting material. Latex p...

متن کامل

Carbon fiber polymer–matrix structural composites exhibiting greatly enhanced through-thickness thermoelectric figure of merit

The through-thickness thermoelectric behavior of continuous carbon fiber epoxy-matrix composites is greatly improved by adding tellurium particles (13 vol.%), bismuth telluride particles (2 vol.%) and carbon black (2 vol.%). The thermoelectric power is increased from 8 to 163 lV/K, the electrical resistivity is decreased from 0.17 to 0.02.X.cm, the thermal conductivity is decreased from 1.31 to...

متن کامل

Effect of surfactants and manufacturing methods on the electrical and thermal conductivity of carbon nanotube/silicone composites.

The effect of ionic surfactants and manufacturing methods on the separation and distribution of multi-wall carbon nanotubes (CNTs) in a silicone matrix are investigated. The CNTs are dispersed in an aqueous solution of the anionic surfactant dodecylbenzene sulfonic acid (DBSA), the cationic surfactant cetyltrimethylammonium bromide (CTAB), and in a DBSA/CTAB surfactant mixture. Four types of CN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002